

V CONGRESSO BRASILEIRO DE ENGENHARIA DE FABRICAÇÃO 14 a 17 de abril de 2009 - Belo Horizonte - Minas Gerais - Brasil

PREVISÕES DE DEFORMAÇÕES LIMITES EM CHAPAS METÁLICAS

Maria Carolina dos Santos Freitas, <u>mariacarolinauff@hotmail.com</u>¹ Luciano Pessanha Moreira, <u>luciano.moreira@metal.eeimvr.uff.br</u>¹ Rabih Makkouk, <u>rmakkouk@ul.edu.lb</u>² Gérard Ferron, <u>ferron@lpmm.univ-metz.fr</u>³

 ¹Escola de Engenharia Industrial Metalúrgica de Volta Redonda, Universidade Federal Fluminense, Av. dos Trabalhadores, CEP 27 255 125 Volta Redonda, RJ, Brazil.
 ²Institut Universitaire de Technologie, Génie Industriel et Maintenance, Université Libanaise, Saida, Libano.
 ³ Laboratoire de Physique et Méchanique des Matériaux, Université Paul-Verlaine Metz, Metz, France.

Resumo: O conceito de curva limite de conformação (CLC) introduzido inicialmente por Keeler e Goodwin é um instrumento muito útil tanto para avaliação do comportamento plástico de chapas como para projeto de ferramental e solução de problemas de manufatura por meio de tentativas-e-erros. Contudo, o procedimento experimental de obtenção da CLC para um dado material é demasiadamente longo sendo ainda sujeito as incertezas com respeito ao método de definição dos limites de deformação. Este trabalho apresenta um modelo de previsão da CLC proposto originalmente por Marciniak-Kuczynski onde é assumida a existência de uma imperfeição geométrica inicial na espessura da chapa na forma de uma banda inclinada. Foram realizadas análises da influência dos principais parâmetros na previsão da CLC e simulações correspondentes ao ensaio com punção plano Marciniak onde são explorados resultados disponíveis na literatura para duas ligas de alumínio na estricção. Os resultados mostraram primeiro a consistência de implantação proposta do modelo Marciniak-Kuczynski para realizar previsões da curva limite de conformação e, em seguida, a importância da descrição do comportamento plástico da chapa no domínio de estiramento biaxial, a saber, entre os estados de deformação plana e tração biaxial simétrica.

Palavras-chave: modelamento, curva limite de conformação, conformação de chapas.

1. INTRODUÇÃO

A estampagem é uma operação que permite obter peças de formas complexas por meio de deformação plástica de um esboço metálico. É um processo amplamente utilizado e produz uma grande diversidade de peças, como carrocerias de automóveis, utensílios de cozinha, embalagens metálicas, componentes mecânicos, entre outros. Neste sentido, faz-se necessário a compreensão do comportamento mecânico dos materiais para que se tenha sucesso neste processo de conformação mecânica.

Os ensaios de estampagem procuram avaliar as condições do esboço metálico para um determinado nível de deformações que a peça tenha sofrido evitando, deste modo, a falha do material, que é caracterizada pelo aparecimento de trincas, rugas, estricção ou até mesmo a ruptura do material. No caso de deformações, a curva limite de conformação (CLC) é uma representação geométrica que separa as regiões de sucesso e falha do material na conformação de chapas finas. Para fins de desenvolvimento tanto de produto quanto de processos a CLC deve então reproduzir condições bem próximas da realidade. A idéia de construir um diagrama de deformações que correspondem à ruptura de um material embutido em laboratório ou em peças reais surgiu nos anos 60 introduzida por Keeler e Goodwin (Keeler, 1965 e Goodwin, 1968). Atualmente, existem muitos ensaios experimentais destinados à determinação da CLC, como a tração uniaxial e biaxial e os testes propostos por Swift, Fukui e Erichsen. A CLC é geralmente determinada com o auxílio de um ferramental simples empregando-se corpos de prova de diferentes larguras, conforme os métodos propostos originalmente por Nakazima (1968) e Marciniak (1967), nos quais o esboço é bloqueado em sua periferia e deformado por um punção hemisférico (Nakazima) ou de fundo plano (Marciniak).

É comum atribuir-se a CLC como uma propriedade intrínseca do material da chapa. Entretanto, variáveis como, por exemplo, aspectos tribológicos e reológicos, geometria do ferramental, espessura inicial da chapa metálica, entre outros fatores, dificultam a reprodutibilidade da CLC mesmo sob condições controladas de ensaios. Na verdade, flutuações destas variáveis podem afetar os níveis de deformações da curva limite de conformação. Por outro lado, existem diversas abordagens teóricas e numéricas para estimar os limites de conformabilidade de chapas metálicas e, portanto, reduzir etapas de tentativas e erros adotados comumente nas estamparias. O presente trabalho tem como objetivo a previsão dos limites de deformação por meio da ocorrência da estricção localizada em chapas metálicas deformadas plasticamente.

A abordagem adotada é baseada no modelo de localização proposto originalmente por Marciniak e Kuczynski (1967), doravante modelo M-K, onde assume-se a existência de um defeito ou imperfeição geométrica na espessura inicial da chapa metálica. Neste tipo de modelo, as deformações limites resultam do processo de localização de escoamento plástico na região defeituosa. O presente trabalho resume primeiramente o modelo M-K e, em seguida, apresenta o critério de plasticidade adotado para descrever materiais isotrópicos e anisotrópicos. Em seguida, as análises apresentam a influência de parâmetros do modelo M-K nos limites de deformações e, por fim, são comparadas as previsões com resultados experimentais disponíveis na literatura para duas ligas de alumínio.

2. MODELAMENTO

2.1. Equações Constitutivas

Em primeiro lugar, a medida de deformações é definida como a integral das taxas de deformação expressas em um referencial co-rotacional descrito em uma base ortonormal e_i (i=1,2,3) que gira segundo a taxa de rotação do tensor "spin" (Makkouk et al., 2008). As equações constitutivas são definidas para o caso particular de pequenas deformações elásticas a partir da decomposição aditiva do tensor de taxa de deformação total, D, em uma parte elástica, D^e , e outra parte plástica, D^p , isto é:

$$\boldsymbol{D} = \boldsymbol{D}^e + \boldsymbol{D}^p \tag{1}$$

(1)

Em seguida, a lei de elasticidade é definida na forma de taxa aplicando-se a derivada de Jaumann ao tensor de tensões de Cauchy, o que significa que o comportamento elástico do material é hipoelástico:

$$\dot{\sigma} = \boldsymbol{C} : \boldsymbol{D}^{e} = \boldsymbol{C} : \left[\boldsymbol{D} - \boldsymbol{D}^{p} \right]$$
⁽²⁾

onde C é o tensor de elasticidade de quarta ordem e os eixos de simetria ortotrópica são definidos no referencial corotacional. Por fim, o comportamento plástico do material é descrito através de lei associada de escoamento em conjunto com a hipótese de encruamento isotrópico, introduzindo-se a condição de escoamento plástico definida pela seguinte função:

$$f = F(\boldsymbol{\sigma}) - \bar{\boldsymbol{\sigma}} = 0 \tag{3}$$

Na Eq. (3) $F(\boldsymbol{\sigma})$ é uma função homogênea de primeiro grau em relação as componentes de tensão de Cauchy $\boldsymbol{\sigma}$ ao passo que $\overline{\boldsymbol{\sigma}}$ é uma medida de tensão efetiva que define o tamanho da superfície de escoamento. As componentes de deformações plásticas são definidas através da regra da normalidade definida por:

$$\boldsymbol{D}^{p} = \dot{\boldsymbol{\varepsilon}}^{p} \frac{\partial f}{\partial \boldsymbol{\sigma}} \boldsymbol{e} \otimes \boldsymbol{e}$$
⁽⁴⁾

onde $\dot{\overline{\epsilon}}^{p}$ é a taxa de deformação plástica efetiva conjugada a tensão efetiva $\overline{\sigma}$.

2.2. Modelo de Localização

A obtenção dos limites de conformabilidade através do modelo M-K onde pressupõe-se a existência de uma imperfeição geométrica inicial na espessura da chapa na forma de um entalhe inclinado. Nesta região há uma perda da resistência, o que favorece o aparecimento da estricção localizada normal à maior componente de deformação principal. Esta falha localizada é uma forma de instabilidade plástica. A Figura 1 esquematiza o modelo de localização tipo M-K adotado neste trabalho (Moreira, 2000).

O modelo M-K tem duas zonas, a saber, a zona homogênea (a) e a defeituosa (b). Ainda, são definidos três sistemas diferentes de coordenadas cartesianas, a saber, os eixos normal **n** e tangencial **t** à imperfeição geométrica na zona defeituosa (b), os eixos das direções principais de simetria ortotrópica ($\mathbf{x}_1, \mathbf{x}_2$) e os eixos das direções principais de taxa de deformação ($\mathbf{e}_1, \mathbf{e}_2$) (Makkouk et al., 2008). O ângulo φ define a orientação entre os eixos de simetria ortotrópica e principais de taxa de deformação ao passo que o ângulo ψ define a orientação entre os eixos de simetria ortotrópica e normal e tangente à imperfeição geométrica. O modelo de localização do tipo M-K assume um estado plano de tensões para um material elastoplástico em conformidade com as equações constitutivas apresentadas em § 2.1.

Figura 1. Sistemas de eixos do modelo M-K (2008).

A imperfeição geométrica inicial é definida pela razão entre as espessuras iniciais das zonas defeituosa e homogênea, ou seja:

$$f_0 = \frac{h_{(0)}^b}{h_{(0)}^a} \tag{5}$$

onde $h_{(t)}$ é a espessura no instante t. A solução do problema de localização do modelo M-K é estabelecida por meio das condições de equilíbrio de forças entre as duas zonas segundo as direções normal **n** e tangencial **t** à imperfeição geométrica:

$$F_{nn}^{a} = F_{nn}^{b} \therefore \sigma_{nn}^{a} h^{a} = \sigma_{nn}^{b} h^{b}$$

$$\tag{6}$$

e

$$F_{nt}^{a} = F_{nt}^{b} \therefore \sigma_{nt}^{a} h^{a} = \sigma_{nt}^{b} h^{b}$$
⁽⁷⁾

em conjunto com a compatibilidade de deformações segundo a direção tangencial t

$$\dot{\boldsymbol{\varepsilon}}_{tt}^{a} = \dot{\boldsymbol{\varepsilon}}_{tt}^{b} \tag{8}$$

onde os índices *nn* e *nt* denotam as componentes de tensões normal e tangencial atuantes nas zonas homogênea (a) e defeituosa (b).

As Eqs. (6-8) formam um sistema de equações não-lineares para a zona defeituosa (b) cujas soluções fornecem as componentes de tensões e deformações assim como a atualização da orientação angular Ψ da imperfeição geométrica. O algoritmo de solução adotado no presente trabalho foi proposto originalmente por Makouk et al. (2008). Em suma, para um dado valor da razão definida entre os incrementos de deformações principais totais na zona homogênea (a), ou seja, $\rho = \Delta \epsilon_2^a / \Delta \epsilon_1^a$, incrementa-se a deformação total principal $\Delta \epsilon_1^a = 10^{-5}$. Em seguida, são determinados os valores das componentes de tensões e deformações plásticas nesta zona com auxílio do algoritmo explícito de previsão elástica-correção plástica do tipo retorno radial (Moreira, 2000). As variáveis na zona defeituosa (b) são então determinadas de forma iterativa por meio de um algoritmo de bisseção. Finalmente, os limites de deformação são obtidos quando as razões definidas entre os incrementos das componentes de tenso es totais nas zonas defeituosa (b) e homogênea (a) forem iguais ou maiores a 10, isto é:

$$\Delta \varepsilon_{nn}^{b} / \Delta \varepsilon_{nt}^{a} \ e \ \Delta \varepsilon_{nt}^{b} / \Delta \varepsilon_{nt}^{a} \ge 10$$
⁽⁹⁾

V Congresso Brasileiro de Engenharia de Fabricação, 14 a 17 de abril de 2009, Belo Horizonte MG

Durante a utilização do modelo de localização M-K devem ser fornecidos os valores da anisotropia plástica, os parâmetros da lei de encruamento de Swift e as propriedades elásticas do material da chapa. É necessário que se assuma um valor inicial da imperfeição geométrica, que varia geralmente em torno de 1% do valor da espessura da zona homogênea. No domínio de embutimento profundo ($\varepsilon_1 > 0 \ e \ \varepsilon_2 < 0$) o valor da orientação inicial da imperfeição geométrica, isto é, o ângulo $\psi^a_{(0)}$, é variado entre 0,2 e 0,3 radianos ao passo que no domínio de estiramento biaxial ($\varepsilon_1 > 0 \ e \ \varepsilon_2 > 0$) a imperfeição é perpendicular à maior componente de tensão principal no plano ($\psi = 0$).

2.3. Critério de Escoamento

Para descrever o comportamento plástico da chapa foi adotado o critério de escoamento anisotrópico proposto por Ferron et al. (1994). O critério é definido para um estado plano de tensões através de uma representação em coordenadas polares (θ, α) onde θ define o estado de tensões ao passo que α orientação entre as direções das tensões principais no plano da chapa (1,2) e os eixos de simetria ortotrópica (x,y), ou seja, o ângulo $\alpha = (x,1) = (y,2)$. A Fig. 2 ilustra o princípio desta descrição através da superfície de escoamento traçada em função da orientação α no espaço de tensões principais normalizadas pela tensão equivalente. Nesta representação, g(θ, α) é o raio polar do lugar geométrico e define a função de escoamento primeiramente como uma extensão do critério isotrópico de Drucker (1949) ao caso de anisotropia normal como:

$$(1-k) g(\theta)^{-6} = F(\theta) = (\cos^2\theta + A\sin^2\theta)^3 - k\cos^2\theta (\cos^2\theta - A\sin^2\theta)^2$$
(9)

e, em seguida, com o termo $F(\theta)$ ao caso de anisotropia planar pela seguinte expressão:

$$(1-k)^{m/6} g(\theta, \alpha)^{-m} = F(\theta)^{m/6} - 2a\sin\theta\cos^{2n-1}\theta\cos2\alpha + b\sin^{2p}\theta\cos^{2q}2\alpha$$
(10)

Na Eq. (10), os expoentes m, n, p, q são inteiros positivos conhecidos a priori enquando os parâmetros A, B, k, a e b são determinados em duas etapas. Primeiro, os parâmetros A, B e k, que definem o caso particular de uma anisotropia normal, são obtidos através do coeficiente de Lankford a 45° da direção de laminação da chapa (R_{45}) e a partir dos limites e ou tensões de escoamento em tração biaxial simétrica ($\sigma_1 = \sigma_2 = \sigma_b$) e em cisalhamento puro paralelo aos eixos de simetria ortotrópica da chapa (x,y), isto é, ($\sigma_1 = -\sigma_2 = \tau$). Em seguida, os parâmetros a e b caracterizando a anisotropia planar do material, podem ser calculados através dos valores do coeficiente de Lankford determinados na direção paralela e transversal ao sentido de laminação (R_0 , R_{90}), método R, ou através dos valores dos limites e ou tensões de escoamento em tração uniaxial (σ_0 , σ_{45} , σ_{90}), método σ . É importante mencionar que a medida de tensão equivalente adotada no critério de Ferron corresponde ao limite de escoamento em tração biaxial simétrica σ_b . Para garantir-se uma boa concordância entre as previsões do limite escoamento em tração uniaxial, $\sigma(\alpha)$, e do coeficiente de Lankford, R(α), ou seja, para obter-se um máximo de R(α) entre 0 e 90⁰ juntamente a um mínimo de $\sigma(\alpha)$ e vice-versa, os valores sugeridos para os expoentes m e q são 2 e 1 respectivamente. Ademais, os valores dos expoentes (n,p)autorizam um melhor controle da variação angular da tensão de escoamento em tração uniaxial, $\sigma(\alpha)$, ao passo que o parâmetro k (> 0) possibilita a obtenção de um achatamento da superfície de escoamento nas regiões de cisalhamento puro e de tração/compressão plana. Ainda, o critério quadrático de Hill (1948) pode ser obtido como um caso particular quando m = 2, k = 0 e n = p = q = 1.

Figura 2. Representação geométrica do critério de plasticidade de Ferron (1994).

Assumindo então a lei associada de escoamento plástico onde o potencial plástico é identificado pela função de escoamento, a descrição do comportamento plástico é finalizada definindo-se a relação entre as grandezas equivalentes de tensão e deformação. Para tal, foi adotada a lei de encruamento de Swift dada por:

$$\sigma = K(\varepsilon_0 + \varepsilon)^n \tag{11}$$

onde K é o coeficiente de resistência, ε_0 a pré-deformação e *n* o expoente de encruamento.

3. RESULTADOS E DISCUSSÃO

A seguir são discutidos os resultados dos efeitos de variáveis que influenciam a previsão das deformações limites pelo modelo de localização tipo M-K. Para tal, foi adotado um material isotrópico modelo com espessura inicial de 1 mm, propriedades elásticas E= 210.000 MPa e v = 0,29 e parâmetros da lei de encruamento de Swift, vide Eq. (11), K= 500 MPa, n = 0,20 e $\epsilon_0 = n/100$, respectivamente.

Em seguida, foram realizadas simulações a partir do modelo M-K para a determinação da CLC de duas ligas de alumínio (A1100 e A5182) e os resultados encontrados foram comparados com medidas da literatura correspondentes ao ensaio com punção plano Marciniak (Takuda et al., 2000) . O alumínio comercial A1100 adotado é um material anisotrópico (R = 0,78) com espessura inicial de 1 mm e um defeito inicial de f_0 = 0,998, propriedades elásticas E= 69.000 MPa e v = 0,33 e parâmetros da lei de encruamento de Swift K = 171 MPa, n = 0,26 e ε_0 = 8,22x10⁻⁴, respectivamente. O alumínio comercial A5182 adotado é um material anisotrópico (R = 0,93) com espessura inicial de 1 mm e um defeito inicial de f_0 = 0,997, E= 69.000 MPa e v = 0,33 e parâmetros da lei de Swift K = 171 MPa, n = 0,26 e ε_0 = 8,22x10⁻⁴, respectivamente. O alumínio comercial A5182 adotado é um material anisotrópico (R = 0,93) com espessura inicial de 1 mm e um defeito inicial de f_0 = 0,997, E= 69.000 MPa e v = 0,33 e parâmetros da lei de Swift, onde K = 570 MPa, n = 0,21 e ε_0 = 8,05x10⁻⁴, respectivamente. Em todos os casos analisados, os parâmetros do critério de Ferron et al. (1994) foram determinados impondo-se a relação B = 3A e adotando-se um valor para o parâmetro k, vide Eq. (9) para o caso de anisotropia normal. O parâmetro de A então é calculado a partir do valor do coeficiente de anisotropia plástica normal R. Na análise de influência das variáveis que afetam a previsão das deformações limites o valor de k foi igual a 0,2 ao passo que nas comparações com as medidas experimentais obtidas para as ligas de alumínio k foi escolhido igual a 0,35.

3.1. Imperfeição Geométrica

A Figura 3 apresenta a influência do valor do tamanho inicial do defeito f_0 nas previsões das deformações limites de um material isotrópico descrito pelo critério de escoamento de von Mises. Como esperado os níveis de deformações decrescem com o aumento do tamanho do defeito tanto no domínio de estiramento biaxial ($\varepsilon_1 > 0 \ e \ \varepsilon_2 > 0$) quanto no domínio de estampagem ($\varepsilon_1 > 0 \ e \ \varepsilon_2 < 0$). Isto ocorre devido a menor resistência ao escoamento plástico com a diminuição de espessura na zona defeituosa "b", vide esquema do modelo de localização M-K mostrado na Fig. 1. É possível observar igualmente que a influência do tamanho inicial da imperfeição é mais acentuada na região de expansão biaxial simétrica ($\varepsilon_1 = \varepsilon_2$) em comparação a região de tração uniaxial ($\varepsilon_2 = -\varepsilon_1/2$). Esta diferença é atribuída à orientação angular da imperfeição geométrica ψ^a que varia entre 0,2 – 0,3 radianos na estampagem e é mantida igual à zero na região de estiramento biaxial e está em concordância com medidas experimentais e previsões obtidas para materiais metálicos com estrutura cúbica de corpo centrado (Barlat, 1989).

Figura 3. Influência do tamanho inicial da imperfeição geométrica.

3.2. Superficie de Escoamento

Por outro lado, as previsões das deformações limites em função do critério de plasticidade adotado estão apresentadas na Fig. 4. Estes resultados foram determinados empregando-se os critérios isotrópicos de von Mises e Drucker (1949) definidos pela Eq. (9) com os parâmetros A = 3, B = 9 e k = 0 e A = 3, B = 9, k = 0,2, respectivamente. A diferença entre as previsões obtidas com estes critérios está relacionada com a forma da superfície de escoamento, sobretudo entre os estados de estiramento biaxial simétrico e deformação plana em tração biaxial, vide Fig. 5. De fato, um achatamento da superfície de escoamento situado entre estes estados de tensões provoca um decréscimo dos valores das deformações limites, conforme observado em previsões numéricas obtidas a partir de modelos de localização baseados em plasticidade policiristalina (Barlat, 1989).

Figura 4. Influência da forma da superfície de escoamento na previsão das deformações limites.

Figura 5. Representações dos lugares geométricos correspondentes as análises da influência do critério de plasticidade na previsão dos limites de deformação a partir do modelo M-K.

3.3. Anisotropia Normal

Para avaliar os efeitos da anisotropia plástica na previsão dos valores de limites de deformações foram realizadas análises considerando-se o caso particular de anisotropia normal. A Fig. 6 compara as previsões em função do valor da anisotropia normal R obtidas a partir dos critérios de plasticidade de Hill quadrático (1948) e Ferron et al. (1994), respectivamente. Verifica-se em relação a chapa isotrópica, R = 1, que as deformações limites no domínio de estampagem ($\varepsilon_1 > 0$ e $\varepsilon_2 < 0$) são quase independentes de R. Por outro lado, no estiramento biaxial ($\varepsilon_1 > 0$ e $\varepsilon_2 < 0$) as deformações limites decrescem com o aumento da anisotropia plástica normal.

Figura 6. Influência do coeficiente de anisotropia plástica normal em função do critério de plasticidade: (a) Hill quadrático (1948) e (b) Ferron et al. (1994).

Estes efeitos no estiramento biaxial podem ser explicados pelo traçado das superfícies de escoamento representado na Fig. 7 no espaço de tensões principais normalizadas pela tensão de escoamento em tração biaxial simétrica. Nesta representação verifica-se que um aumento no valor de R equivale a um decréscimo na razão entre as tensões de escoamento em deformação plana por tração biaxial e expansão biaxial simétrica, vide parâmetro $P = \sigma_{DP}/\sigma_b$ na Fig. 7. Logo, uma diminuição do parâmetro P, provocada pelo aumento da tensão de escoamento em tração biaxial simétrica σ_b , implica no decréscimo das deformações limites no domínio de estiramento biaxial, vide previsões para R = 1,0 e 2,0. Em outras palavras, as deformações limites no estiramento biaxial são controladas por este parâmetro material. Ademais, o parâmetro P caracteriza melhor o efeito de mudança de trajetória de deformação na estricção em direção ao estado plano de deformação em comparação ao valor de R identificado por meio de uma solicitação simples de tração uniaxial. Isto explica também a diferença entre os critérios de plasticidade uma vez que as superfícies de escoamento obtidas com a descrição de Ferron et al. (1994) têm um achatamento entre as regiões de deformação plana e cisalhamento puro e, por conseguinte, menores valores de P quando comparados às previsões do critério de Hill quadrático (1948).

Figura 7. Lugares geométricos determinados em função do coeficiente de anisotropia plástica normal R: (a) Hill quadrático (1948) e (b) Ferron et al. (1994).

V CONGRESSO BRASILEIRO DE ENGENHARIA DE FABRICAÇÃO 14 a 17 de abril de 2009 - Belo Horizonte - Minas Gerais - Brasil

3.4. Previsões do Ensaio de Marciniak

Foram realizadas simulações a partir do modelo M-K para a determinação da CLC na estricção de duas ligas de alumínio (A1100 e A5182) avaliadas experimentalmente por Takuda et al. (2000) com auxílio da técnica de Marciniak, ou seja, por meio de ensaios no plano e, portanto, isentos de efeitos de flexão e atrito ao menos na região de interesse. A Fig. 8 compara as previsões das deformações limites determinadas com o modelo proposto de localização com os resultados experimentais obtidos por Takuda et al. (2000). É possível observar uma melhor concordância entre previsões e medidas experimentais do alumínio A1100, seja no domínio de estampagem seja em estiramento biaxial. Por outro lado, a tendência experimental da liga de alumínio A5182 foi reproduzida somente na região de estampagem e as previsões estão acima dos valores experimentais tanto em deformação plana quanto sob condições de estiramento biaxial. Estas diferenças sugerem um ajuste dos parâmetros do critério de plasticidade com bases em ensaios de tração biaxial simétrica e sob condições de deformação plana para determinar corretamente o valor dos parâmetros A, B e k do critério de Ferron et al. (1994) e, portanto, reproduzir melhor os estados de tensão de interesse.

Figura 8. Comparação entre as previsões de deformações limites determinadas com modelo de localização M-K e os resultados experimentais obtidos no ensaio de Marciniak (Takuda et al., 2000): (a) A1100 e (b) A5182.

4. CONCLUSÕES

O modelo de previsão de deformações limites do tipo Marciniak e Kuczynski (1967) desenvolvido neste trabalho considera a lei de elasticidade linear isotrópica de Hooke e efeitos de anisotropia em conjunto com a hipótese de encruamento isotrópico. Foram analisados os efeitos dos principais parâmetros deste modelo nas previsões da Curva Limite de Conformação. O tamanho inicial da imperfeição geométrica exerce maior influência seguido pelos efeitos de forma da superfície de escoamento. Em particular, o domínio de estiramento biaxial ($\varepsilon_1 > 0$ e $\varepsilon_2 > 0$) onde os valores de deformações limites podem ser atribuídos ao parâmetro material definido pela razão entre as tensões de escoamento em deformação plana e expansão biaxial simétrica. A comparação com resultados encontrados na literatura apresentou boa concordância com as medidas experimentais obtidas para o alumínio A1100. Neste sentido, é possível concluir que a implantação proposta para o modelo de localização do tipo Marciniak-Kuczynski é adequada para realizar previsões da curva limite de conformação na estricção.

5. AGRADECIMENTOS

Luciano P. Moreira agradece a Université Paul-Verlaine Metz (França) pela estada no Laboratoire de Physique et Mécanique des Matériaux na qualidade de Professor Visitante no ano de 2007. Os autores agradecem a CAPES pelas bolsas de Mestrado no âmbito do programa PROAP/CAPES e a FAPERJ (Jovem Cientista do Nosso Estado 2008).

6. REFERÊNCIAS

- KEELER, S.P., Determination of the forming limits in automotive stamping, Sheet Metal Industries, Vol. 461, 1965, p. 683-691.
- GOODWIN, G.M., Application of the strain analysis to sheet metal forming in the press shop, La Metallurgia Italiana, Vol.8, 1968, p. 767-772.
- NAKAZIMA, K., KIKUMA T. e HASUKA, K., Study on the formability of steel sheets, Yawata Technical Report No 264, 1968, p. 141.
- MARCINIAK Z. E KUCZYNSKI, K., Limit strains in the process of stretch-forming sheet metals, International Journal of Mechanical Sciences, Vol. 9, 1967, p. 609-620.
- MAKKOUK, R., BOURGEOIS, N., FERRON, G., Experimental and theoretical analysis of the limits to ductility of type 304 stainless steel sheet, European Journal of Mechanics A/Solids, Vol. 27, No 2, 2008, p. 181-194.
- MOREIRA, L.P., FERRON, G. AND FERRAN, G., Influence of the plasticity model in sheet metal forming simulations, Journal of Materials Processing Technology, Vol. 108, No. 1, 2000, p. 78-86.
- FERRON, G., MAKKOUK, R. AND MORREALE, J., 1994, A parametric description of orthotropic plasticity in metal sheets, International Journal of Plasticity, Vol.10, p. 51-63.
- DRUCKER D.C., Relation of experiments to mathematical theories of plasticity. Journal of Applied Mechanics, Transactions of the ASME, Vol. 16, 1949, p. 349-357.
- BARLAT F., Forming limit diagrams Predictions based on some microstructural aspects of materials. In :R.H. Wagoner, K.S. Chan and S.P. Keeler, Editors. Forming Limit Diagrams: Concepts, Methods and Applications, TMS, 1989, p. 275-301.
- HILL, R. A, Theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society of London, A 193, 1948, p. 281-297.
- TAKUDA, H., MORI, K., TAKAKURA, N. E YAMAGUCHI, K., Finite element analysis of limit strains in biaxial stretching of sheet metals allowing for ductile fracture, International Journal of Mechanical Sciences, Vol. 42, N. 4, 2000, pp. 785-798.

7. DIREITOS AUTORAIS

Os autores são os únicos responsáveis pelo conteúdo do material impresso incluído no seu trabalho.

PREDICTIONS OF LIMIT STRAINS IN METALLIC SHEETS

Maria Carolina dos Santos Freitas, <u>mariacarolinauff@hotmail.com</u>¹ Luciano Pessanha Moreira, <u>luciano.moreira@metal.eeimvr.uff.br</u>¹ Rabih Makkouk, <u>rmakkouk@ul.edu.lb</u>² Gérard Ferron, <u>ferron@lpmm.univ-metz.fr</u>³

¹Escola de Engenharia Industrial Metalúrgica de Volta Redonda, Universidade Federal Fluminense, Av. dos Trabalhadores, CEP 27 255 125 Volta Redonda, RJ, Brazil. ²Institut Universitaire de Technologie, Génie Industriel et Maintenance, Université Libanaise, Saida, Líbano.

³Laboratoire de Physique et Méchanique des Matériaux, Université Paul-Verlaine Metz, Metz, France.

Abstract : The concept of the Forming Limit Curve (FLC) firstly introduced by Keeler and Goodwin is a very useful tool to assess either the plastic behavior of thin sheets or the tooling design to solve manufacture problems during the try-out steps. However, the experimental procedure to obtain the FLC for a given material is extremely time-consuming and may also be subjected to some uncertainties with respect to the adopted method to determine the limit strains. This work presents a model to predict the FLC proposed originally by Marciniak-Kuczynski wherein it is assumed an initial geometric deffect in the form of an inclined groove in the sheet thickness. The influence of the main parameters affecting the FLC prediction has been analyzed. The experimental forming limit curves available in the literature for two aluminum alloys were also investigated. The results showed firstly the consistency of the proposed implantation vis-à-vis the expected behavior for the forming limit curve of metallic sheets. Then, the importance of the plastic behavior description to model the biaxial stretching domain, namely, between the plane-strain and equalbiaxial stretching stress states.

Keywords: modeling, forming limit diagram, sheet metal forming